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Abstract
Motivated by the growing popularity of database-as-a-
service clouds, this paper presents ShuttleDB, a holis-
tic approach enabling flexible, automated elasticity of
database tenants in the cloud. We first propose a
database-aware live migration and replication method
designed to work with off-the-shelf databases without
any database engine modifications. We then combine
these database-aware techniques with VM-level mech-
anisms to implement a flexible elasticity approach that
can achieve efficient scale up, scale out, or scale back for
diverse tenants with fluctuating workloads. Our experi-
mental evaluation of the ShuttleDB prototype shows that
by applying migration and replication techniques at the
tenant level, automated elasticity can be achieved both
intra- and inter-datacenter in a database agnostic way.
We further show that ShuttleDB can reduce the time and
data transfer needed for elasticity by 80% or more com-
pared to tenant-oblivious approaches.

1 Introduction

In recent years, online applications have increasingly mi-
grated to cloud platforms, which use data centers to pro-
vide computing and storage resources to these applica-
tions. Databases are no exception to this trend, and many
services have been built on the idea of the “database
cloud.” Examples include Amazon RDS [1] and Google
Cloud SQL [19], which expose cloud-based relational
databases to client applications, and Salesforce, which
employs a shared database used by many independent
customers. There are numerous advantages to the cloud-
based model, such as the pay-as-you-go model, where
resources are billed and paid for on a fine-grain usage
basis, and flexible resource allocation, where computing
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Figure 1: Provisioning for peak demand (left) may result in
lower utilization and higher costs versus an elastic approach
(right) requiring fewer dedicated resources.

and storage can be dynamically increased or decreased
based on an application’s changing workload needs.

The key to realizing many of these benefits is elasticity
– the ability of the cloud platform to adjust an applica-
tion’s resource allotment on the fly when responding to
long-term workload growth, seasonal variations, or sud-
den load spikes. Since workload peaks tend to be tran-
sient in nature, a priori static provisioning for the peak re-
sults in substantial waste as resources sit unused at non-
peak times—typical server utilization in real data centers
has been estimated at only 5-20% [4]. An example of this
issue is shown in Figure 1. Figure 1(a) shows an exam-
ple workload serviced by traditional dedicated resources.
However, if the system is elastic, as shown in Figure 1(b),
we can simply shift load to a new server during peak de-
mand, and thus reduce the dedicated resources needed to
service the workload.

Database Elasticity. Despite their widespread use,
databases present some of the greatest difficulties in sup-
porting elasticity. These difficulties largely stem from
the specific requirements of relational databases, such as
transactions and ACID compliance, and have led some
to label the SQL database as the “Achilles heel of cloud
elasticity” [20]. While most modern databases support
clustering and replication (e.g., products such as MySQL
Cluster), these systems are seldom designed to dynami-
cally grow or shrink, and often introduce configuration,
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management, or performance overhead [15].
While it is possible to encapsulate databases into vir-

tual machine containers and use “standard” VM-based
cloud elasticity mechanisms such as VM migration or
VM replication (e.g., Amazon’s auto-scaling [2]), the
approach does not work well for many database cloud
scenarios. For example, shared hosting scenarios (e.g.,
Salesforce cloud) are designed to collocate large num-
bers of (small) database tenants on single servers, which
is not well suited to a VM-per-tenant elasticity model. If
multiple tenants share single VMs to counteract the im-
pact of hosting many VMs, then elasticity of the server
is limited when using VM-level techniques, since in-
dividual tenants can no longer be migrated or repli-
cated. VM-level mechanisms may also be unnecessar-
ily heavyweight [24] for a “standard” application such
as a database server that may not require significant cus-
tomization of the underlying system.

Alternatives to VM-based black-box elasticity for
databases include NoSQL systems (e.g., key-value stores
such as BigTable [10] or Dynamo [16]), or augment-
ing the database engine itself to support elasticity (e.g.,
Zephyr [18], Albatross [14], and RemusDB [23]). How-
ever, these approaches introduce significant added com-
plexity within the database itself and may change the
behavior observed by client applications (e.g., the pos-
sibility of transaction failures during migrations [18]).
In some ways, however, multitenant databases are well
suited to application-level elasticity; for example, each
database tenant may be viewed as a lightweight con-
tainer, in the same way that a single VM is the unit of
elasticity in VM migration.

Ideally, database elasticity should be based on migra-
tion and replication—like VM elasticity—and be trans-
parent to the application and database engine, just as VM
elasticity is transparent to the application and the OS.

Contributions. In this paper, we present ShuttleDB, a
flexible system combining virtual machine elasticity with
lower-level, database-aware elasticity to provide efficient
database elasticity both within and across cloud data cen-
ters. Our primary contributions are threefold:

1. We examine the dichotomy between high-level
VM migration and low-level DB-aware migration to de-
cide when each approach is more appropriate. In par-
ticular, we identify two primary system dimensions de-
termining what type of elasticity is appropriate—tenant
type/size (i.e., collocated vs dedicated) and network type
(i.e., LAN vs WAN). On this basis, for each database ten-
ant that requires to be elastically scaled, ShuttleDB de-
termines (a) whether to use high-level VM elasticity or
low-level DB-aware elasticity, and (b) whether to scale
up, scale out or scale back.

2. We present a specific technique for database-aware
live migration, allowing migration of individual database

tenants among servers without incurring the full cost of
virtual machine migration. In contrast to most existing
work, our technique requires no changes to the database
engine, relying only on the presence of standard hot
backup tools, and can be done live without any database
down time. Additionally, performance optimizations en-
able efficient operation across wide-area networks.

3. We present a prototype implementation of Shut-
tleDB as a elasticity middleware that uses an off-the-
shelf DBMS and virtualization platform. We empirically
evaluate our system and demonstrate that it automatically
achieves efficient elasticity under a variety of system
conditions. In particular, we find that it provides tenant
migration with minimal client workload delays and can
reduce the time and data transfer needed for elasticity by
80% or more compared to tenant-oblivious approaches.

2 Database Clouds and Elasticity

Database Clouds. We assume the environment of a
cloud providing a “database as a service” to its cus-
tomers. In a database cloud, each customer rents a
database from the cloud and manages it as a normal rela-
tional database, while the cloud is responsible for ensur-
ing high performance. In particular, we assume that the
cloud has a pool of physical, virtualized servers spread
across one or more data centers. Each server houses one
or more virtual machines (VMs), and each VM in turn
houses one or more database tenants. In our work, a ten-
ant is defined simply as an independent consumer of re-
sources — most likely a single user or customer servic-
ing a particular application. Multiple tenants may reside
on individual servers so as to maximize server utilization
and minimize hardware costs.

Small tenants (those with little data and/or small work-
loads) may be co-located within a single VM to avoid in-
curring the memory overhead of housing many VMs with
individual OSes. Within a VM, all collocated tenants
are assumed to share the same database process, which
has been advocated in order to maximize resource shar-
ing [13]. As a illustrative example, we executed a simple
workload across 10 tenants on a server, first sharing an
instance between all tenants (single-process), then with
10 separate processes with equal resource shares (multi-
process). Transaction latencies as we scale the aggregate
workload in both cases are shown in Figure 2. As the
server becomes heavily loaded, we see that the multi-
process model quickly falls behind, eventually showing
3x higher latency than the single-process model.

Large tenants, on the other hand, are housed in a ded-
icated virtual machine, which enables them to use all of
the CPU and storage resources allocated to the VM. This
model is analogous to EC2 compute clouds or shared
hosting scenarios such as Salesforce [26].
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Figure 2: Single-process multitenancy outperforms multi-
process multitenancy under load.

Tenant workloads are dynamic and can exhibit tempo-
ral variations or sudden spikes. In response to such vari-
ations, an important function of the cloud is to elastically
scale the resources available to tenants. The mechanisms
for providing this elasticity can be divided into two pri-
mary categories: VM-level or database-level approaches.

VM-level mechanisms: In the simplest case, when
a tenant is about to experience an overload, its virtual
machine can be migrated to a larger physical server and
the VM can be allocated additional resources as needed.
Such VM migration can be performed on-demand, trans-
parently, and without noticeable downtime [11]. Al-
though widely supported by virtualization platforms,
however, VM migration is is wasteful for small tenants.
Since many small tenants share a single virtual machine,
moving the underlying VM and its disk moves all resi-
dent tenants, even if only one tenant is experiencing the
increased workload. The simplicity of VM migration
is, however, useful for large tenants housed in dedicated
VMs – in this case, although the migration moves both
the OS and the database, the extra overhead of moving
the OS state gets increasingly amortized as the database
size grows. VM mechanisms may also be used to repli-
cate tenants onto different servers. In this case, a snap-
shot of the virtual machine disk is taken and copied over
to the new server, which is started as a new VM instance
containing a replica of the tenant Scale out via replica-
tion is best suited for large database tenants where the
capacity required to service the tenant workload exceeds
that of a single physical server.

Despite the simplicity and application-agnostic nature
of VM-level elasticity, the VM-based approach is not
without drawbacks. First, since VM migration and repli-
cation are black-box techniques, we cannot exploit use-
ful application-specific properties, such as the presence
of a database query log (which allows for query ship-
ping instead of only data shipping as done in VM mi-
gration). Second, since most VM migration designs as-
sume a shared, network-attached storage system, the tar-
get scenario is shipping memory state rather than disk
state as in a database. Recent versions of Xen support
migration of both VM memory and disk state in shared-

Dedicated Tenant Colo Tenant
(large) (small)

LAN scale-up VM migrate DB migrate
LAN scale-out DB or VM replicate
WAN scale-up DB migrate DB migrate
WAN scale-out DB replicate

Table 1: Elasticity mechanisms in ShuttleDB are intelligently
chosen on tenant size and network characteristics.

nothing servers, but this still assumes a LAN environ-
ment. WAN-oriented extensions to VM migration have
been proposed [29] but are not yet natively supported by
off-the-shelf VM platforms.

Database-level mechanisms: A different approach is
to implement elasticity at the application (i.e., database)
level. Many such systems have been previously pro-
posed [14, 18, 23], but operate largely by modifying
the internals of the database itself. Such modifications
complicate usage by end-users, as the operational guar-
antees of the database may change—e.g., the possibil-
ity of unpredictable transaction failures during migration
in [14]. To be practical, database enhancement should
retain transactional (ACID) semantics when implement-
ing migration. Similarly, traditional master-slave repli-
cation allows us to implement a basic form of scale-
out elasticity by adding or removing slave instances.
However, many replication environments are oriented to-
wards heavily manual configuration, and simply moving
a database to a new server without downtime often in-
volves more overhead than necessary if using replication.

Database-level elasticity has several advantages when
used in cloud environments. Since replication and migra-
tion can be performed on a per-tenant basis, it is particu-
larly useful for small tenants that share a virtual machine
(as overloaded tenants can be individually migrated). For
large tenants, these differences are less important and the
benefits of database-level elasticity may not outweigh the
downsides of added complexity. For cross-data center
WAN elasticity, however, database-level mechanisms are
still preferable due to the current limitations of VM-level
mechanisms over WAN migration.

ShuttleDB approach. From the previous discussion,
it follows that neither VM-level nor database-level elas-
ticity works well in all scenarios. Consequently, Shut-
tleDB incorporates both VM-level and DB-level elas-
ticity and automatically chooses the “best” elasticity
mechanism for each elastic operation on a given tenant
(e.g, VM-level or DB-level, and scale-out or scale-up).
In addition, ShuttleDB provides its own technique for
database live migration that does not require any modifi-
cation to the internals of a database and works with most
off-the-shelf database platforms. We also show how this
approach can be used to implement database replication
in multi-tenant master-slave settings.
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The ShuttleDB approach is summarized in Table 1.
For small, co-located tenants within a VM, scale up is the
best elasticity option, since tenant requirements are less
than the capacity of a single server. Further, database-
level mechanisms are more efficient since they enable
a single tenant to be migrated independently of others,
while a VM-level mechanism would need to move the
entire VM and all resident tenants. For large dedicated
tenants, the choice depends on other factors. If the ten-
ant is still smaller than a single machine, scaling up by
migration to a larger machine is a feasible option. Within
a LAN, VM migration is the simplest approach. When
the tenant requirements exceed the capacity of a single
server, it must be scaled out by replicating onto multiple
machines. Within a LAN, this can be achieved by ei-
ther VM- or DB-replication. Across cloud data centers,
however, DB-level migration or replication is preferable
to VM-level mechanisms, due to the premium placed on
bandwidth usage in such scenarios.

3 Database-Aware Elasticity

Elasticity requires both migration for scaling up and
replication for scaling out. Replication is actually a spe-
cific case of migration where the original database does
not have to be stopped at the end of migration. Virtual
machine migration is built-in to modern hypervisors, and
as such is relatively simple to employ. Database-aware
migration, on the other hand, is not part of off-the-shelf
DBMSes. To address this issue, ShuttleDB provides its
own database migration technique, which also serves as
the building block for replication elasticity. Our tech-
nique draws inspiration from live VM migration [11] and
database migration [6] methods, but has important dif-
ferences from both. While VM migration uses “black
box” data shipping to transfer state to the target machine,
our DB migration technique combines query log ship-
ping and data shipping for greater efficiency. “Process-
level” techniques used in previous work such as [6] mi-
grate all database state managed by a database server
process, while our method can perform “tenant-level”
migration where individual tenant databases within a
database server can be live migrated. ShuttleDB’s elas-
ticity protocol is ‘live’, with minimal downtime regard-
less of data size, and is fully transparent to clients of the
database. Our database-agnostic migration protocol is
described below, while our database-specific prototype
implementation is detailed in Section 5.

3.1 Migration Protocol
DB-aware migration in ShuttleDB employs a three-phase
database migration protocol, which is shown in Figure 3.
For a given migration, we have three logical machines to

consider: the source server on which the migrating tenant
currently resides, the target server to which the tenant is
migrating, and the client(s) currently issuing requests to
the migrating tenant.

Phase 1 – Hot Backup. In the first phase, we cre-
ate a live snapshot of the tenant database by employing
an off-the-shelf hot backup tool and streaming the re-
sulting backup image to the target server. Suitable hot
backup tools are available for most well-known database
systems (MySQL, Postgres, Oracle, etc.). Since the ten-
ant may have a large amount of data, taking this snap-
shot may take minutes to hours. However, as the server
is not blocked during this period, it continues to service
all client workloads as usual. At the completion of the
first phase, the target server contains a copy of the tenant
database up to some position in the binary log.

Phase 2 – Live Deltas. Once phase 1 completes, a
consistent snapshot of the tenant exists on the destination
server, but may be out of date, since the local server con-
tinues to execute queries during the backup. If replica-
tion has to be performed, the slave replica can be started
right away at the destination, letting the database replica-
tion mechanisms bring the replica up to date.

In case of migration, the second phase proceeds as a
series of delta rounds in which the source server replays
queries from the binary log and streams them across the
network to bring the target server up to date. This is anal-
ogous to memory deltas used in VM migration, but ap-
plied to a query log instead of the contents of memory.

Let ps be the log position of the source server and pt
be the log position of the target server. At the start of
each round, the target server sends pt to the source. The
source then reads from pt to ps in the log and sends this
delta to the target, which is applied to the target database
after filtering queries not pertaining to the migrating ten-
ant. Once the delta is applied to the target, the next round
begins by again sending pt to the source.

Delta rounds continue until the duration of the most re-
cent round is either (a) less than a small threshold (e.g., a
few seconds) or (b) greater than the round before it. This
approach guarantees termination of phase 2. In typical
circumstances, each delta round is shorter than the last
(since the number of write queries in the next delta round
is proportional to the duration of the previous round),
which will ultimately result in satisfying condition (a). If
this is not the case – i.e., delta rounds are getting longer –
then this is an indication that the target server is actually
falling further behind the source and will trigger condi-
tion (b). In either case, migration proceeds to phase 3.

Phase 3 – Handover Delta. Once delta rounds are
completed, the two copies of the database are nearly in
sync, and we are ready to hand off the tenant workload
from the source to the target. To do this, a final han-
dover delta is performed to complete migration. The lo-
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Figure 3: Three-phase live migration protocol for database ten-
ants used in ShuttleDB.

cal server first freezes the tenant workload by queueing
all new incoming transactions directed at the migration
tenant (but without blocking existing transactions), then
waits to finish servicing the tenant’s outstanding transac-
tions prior to the freeze. Once all such transactions are
completed, the local server sends a final delta, bringing
the target server fully in sync with the source (since new
transactions are frozen in the meantime). Once the final
delta is applied, previously queued transactions are for-
warded to the target server, clients are redirected to the
new server, and the tenant workload is unfrozen. This
completes the handover and switches the ‘authoritative’
tenant copy to the target server. Note that while phase
3 necessarily imposes a degree of effective downtime
while the final delta is applied, this duration is not depen-
dent on the size of the database and is typically a second
or two at most, as demonstrated in Section 6. Down-
time may be longer if phase 2 was terminated by length-
ening delta rounds, but this case is unlikely except with
extremely write-intensive workloads.

To adjust this migration protocol for replication, we do
not need to freeze the workload at the master. Instead,
the slave connects to the master and receives a continu-
ous stream of updates from the master. Queries can be
directed to the new slave as soon as it has caught up.

3.2 Performance Optimizations

We employ two notable performance optimizations dur-
ing the migration process. First, we consider the fact that

T2T2

(a) Outgoing Migration

Server A Server B

T3

(5)  handover

(3) extract(4) deltas

T1

T2

T3

(1) queries

(2) archive(6) deltas

T5

T4

(1) queries

(2) streamingarchive

Database Client

(3) streaming diff

T4

(4) patch

(5) extract

(7) handover

(b) Returning Migration

Server A Server B

Figure 4: Saving a tenant archive during migration allows
transferring small diffs instead of the full tenant database dur-
ing subsequent migrations.

since migration itself imposes some degree of overhead
(e.g., streaming the migrating tenant), local performance
may be degraded. To address this issue, we employee
an automated technique previously proposed [6] that au-
tomatically and dynamically rate-limits migration (de-
pending on performance) to avoid excessive interference.
Second, we consider the case when a migration is per-
formed to a server containing an old version of the ten-
ant (e.g., when migrating to a server containing a backup
or returning from a cloud server following a temporary
workload spike). Here, we do not need to migrate the
entire tenant, but can transmit only the (small) delta be-
tween the old tenant copy and the up-to-date version.

This process, which we term ‘delta migration’, is illus-
trated in Figures 4(a) and (b) for an outgoing and return-
ing migration, respectively. During the initial hot snap-
shot (phase 1) of the outgoing migration, we save a copy
of the snapshot on both the source server (a local copy) in
addition to the usual streaming copy to the target server.
The remainder of phases 2 and 3 then proceed as normal.
During phase 1 of the return migration, however, rather
than streaming the database back to the source server,
we re-use the older snapshot already present locally. We
then generate a patch from the original database snapshot
and stream only this patch back to the source. Since the
source still has a copy of the original snapshot, it then ap-
plies the patch to generate the up-to-date snapshot, then
proceeds phases 2 and 3 of bursting as usual.

In performing this optimization, we are able to skip
the most expensive part of migration (the full data stream
in phase 1). The net result is a major reduction in the
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amount of network data that must be transferred to mi-
grate between machines. This reduction in network traf-
fic is of particular interest when migrating over the wide-
area, e.g., between a local cluster and Amazon EC2,
since such transfers are likely to be over relatively low-
bandwidth links.

Note that pre-copying can also be employed to reac-
tively spawn slave replicas in case of a sudden load spike.
Previously terminated replicas can be quickly restarted
by sending the small diff patch containing the updates
that occurred since they were stopped.

4 Automated Elasticity

ShuttleDB employs an intelligent algorithm that com-
bines VM-level elasticity with the database-level tech-
niques described in the previous section to automatically
scale the capacity of each tenant as needed by the work-
load. The algorithm involves four key steps: (i) when
to invoke the scaling algorithm, (ii) who (i.e., which ten-
ant(s)) to choose for optimization, (iii) where to migrate
or replicate the tenant(s), and (iv) which mechanisms to
use for scaling: i.e., scale-up, scale-out or scale-back and
whether to use VM-level or DB-level techniques. The al-
gorithm involves the following steps:
Step 1: When to initiate elastic scaling: ShuttleDB
monitors the current query latency of tenants in the
database server (computed as a smoothed average over
a sliding window) and also tracks the resource usages
at the underlying virtual machine to determine when to
initiate the scaling algorithm. ShuttleDB uses an upper
threshold on latency and resource utilization as well as
a lower threshold on these values to initiate scale-up/out
and scale-back, respectively. Further, in addition to re-
actively triggering the algorithm when the thresholds are
breached, it is also possible to use time series based load
forecasting that uses past trend history to predict future
values and use these predictions to proactively initiate the
algorithm. Currently, we use a standard ARIMA time-
series forecasting method, which smooths the observed
latencies and utilization over recent time periods to pre-
dict future values [28].
Step 2: Which tenants to choose for scaling: In most
cases, the tenant that is experiencing the overload (or
is about to, as per predictions) is chosen for scaling
(or for scaling back if it is under-loaded and below the
low threshold). However the choice of which tenants
to choose may not always be staightforwad. In certain
shared co-location scenarios, for example, no single ten-
ant may be experiencing an overload but each tenants
may be experiencing small increases in load so that they
all collectively exceed the higher threshold. A more in-
teresting scenario is one where one tenant is overloaded,
but it may be cheaper to move out a different tenant and

give the freed resources to the overloaded tenant. For
example, if two tenants equally share a VM’s CPU and
memory and have database sizes of 5GB and 10GB, and
if latter experiences overload, it is cheaper to move the
first tenant and give all of the VM’s resources to the lat-
ter. To intelligently choose the “correct” tenants, Shut-
tleDB performs a simple cost-benefit analysis. The cost
of moving a tenant is estimated as the amount of disk
state (and possibly memory state when using VM-level
migrations) that must be transferred. The benefit of mov-
ing a tenant is the amount of load it offloads to a differ-
ent server (measured as CPU or disk load, depending on
the bottleneck resource on that VM). ShuttleDB greedily
chooses the tenants with the greatest benefit to cost ratio
– that is, those that offload the most load at the lowest
data transfer cost.
Step 3: Where to move a tenant: Whenever possible
ShuttleDB attempts to move tenants to servers in the
same cloud data center. In scenarios where local re-
sources are stressed, ShuttleDB will then choose to move
tenants to servers in the nearest cloud site. Note that such
WAN-level migrations or replication must be done care-
fully since there will be an impact on the front-end tiers
of the application, which may experience WAN laten-
cies if the backend tenant moves to a different site. Typ-
ically such moves would be done in consultation with
the elasticity mechanisms of the front-tier as well, but
such coordinated elasticity mechanisms are beyond the
scope of this paper, and here we assume that the scal-
ing of database cloud is done independently.1 Typically
for scale out and scale up, ShuttleDB chooses any server
with sufficient idle resources. Scale back for shared ten-
ants involves a consolidation and ShuttleDB chooses a
virtual machine that hosts other shared tenants but has
sufficient resources to house more.
Step 4: Which mechanisms to choose: The final step
involves determining which elasticity mechanism to
choose. Table 1 depicts the preferred DB or VM-level
mechanism used in each case. For shared (small) tenants,
scaling up is the preferred option and DB-level mech-
anisms are used to move only the desired tenants and
avoid needless data copying. The only scenario where
scale out is used for a small tenant is when it experi-
ences a very large workload growth - in this case, a DB
migration is first performed to extract the tenant out of
the shared VM and it is given its own VM, which is
then replicated, like in the large dedicated tenant case.
For large dedicated tenants, ShuttleDB attempts to scale
up (migrate to bigger server) when possible and then
uses scale out (replicate to other servers) when no single
server can service the incoming workload. LAN mecha-
nisms are always preferred over WAN.

1Amazon’s S3 storage also performs such geographic replication
independently, although latency issues are more critical for databases.
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Figure 5: ShuttleDB consists of three tiers: a database/tenant
tier (using an off-the-shelf DBMS), a database elasticity tier
(using VM or DB-aware migration), and a top-level manager
(e.g., to facilitate elasticity).

5 Prototype Implementation

Our current implementation of ShuttleDB uses a three-
tier design as depicted in Figure 5. End-users (or appli-
cation servers) talking to the databases interact with the
lowest level of the system, which are standard database
processes running within VMs (e.g., mysqld). Above
the database servers is the elasticity layer, which pro-
vides the automated mechanisms to dynamically grow,
shrink, or relocate the resources allocated to any given
database tenant, using either VM-level or DB-level elas-
ticity. At the highest level is the elastic database man-
ager, which employs the simple API exposed by the elas-
ticity layer to manage server and tenant workloads. The
manager may implement simple or sophisticated algo-
rithms for automatically administrating a database server
cluster. While many database managers are possible, we
present an example in Section 6 for automating the pro-
cess of ‘cloud bursting’, in which tenants are migrated to
remote servers to alleviate workload spikes.

Each physical server in our prototype runs a single in-
stance of the ShuttleDB daemon on the domain0 VM,
which runs Xen Cloud Platform 1.6 on top of CentOS
6 to manage all VMs on the server. Multiple daemons
communicate in a peer-to-peer fashion to facilitate mi-
grations. Separate daemons runs within each domainU
VM to manage the database-aware elasticity layer.

VM elasticity. To allow for shared-nothing live mi-
gration of virtual machines, we make use of the Storage
XenMotion feature, which allows for moving disk, mem-
ory, and virtual devices to a remote host. To clone an
active VM, we snapshot the VM (a live operation), then
export the snapshot to a new VM on the local or remote

host. We then start the cloned VM and update its network
settings to result in a suitable VM for replication.

DB elasticity. We implemented our technique for
database-aware migration on top of MySQL, using the
Percona XtraDB [25] database engine (effectively Inn-
oDB with a few useful extensions pertaining to tak-
ing backups) provided by the Percona Server package.
The database elasticity implementation is loosely cou-
pled from the database engine itself, as follows. For mi-
gration phase 1 (streaming backups), we use a hot backup
tool (Percona xtrabackup [30] in the current proto-
type) to snapshot and extract the data for the migrat-
ing tenant, which is compressed and streamed across the
network to the target server. On completion, the target
server imports the tenant database into the already run-
ning database server (this functionality is provided both
by XtraDB and bleeding-edge versions of InnoDB [5]).
We perform phase 2 (live deltas) by reading from the
database transaction log and streaming updates to the tar-
get server. The queries executed since the initial snap-
shot or last delta round are filtered to remove extraneous
queries pertaining to non-migrating tenants, then shipped
to the target server and executed. For simplicity, once
the handover of phase 3 begins, we employ a client-
side proxy to freeze the workload and temporarily queue
transactions, then release those transactions to the tar-
get server once the handover completes. This approach
avoids having to make any modifications to the database
engine itself.

Delta migrations. Our implementation handles the
delta migration optimization described in Section 3.2 at
a disk block level. During the initial outgoing migration,
the local copy of the tenant is saved as a single binary
archive file, which is also transferred to the target server.
When the return migration is initiated, the database patch
is simply generated as a disk-level patch between the
original archive file and the up-to-date archive file us-
ing rdiff. Since this approach is oblivious to any ac-
tual data formats used by the database, it relies on block-
level similarities between the archives to generate a com-
pact diff – however, our experiments in Section 6 demon-
strate that this is generally sufficient and results in a small
patch file. One issue we encountered during testing was
workload interference resulting from the archiving pro-
cess, since saving a local copy of the archive required
substantial I/O resources. To counteract this, we added
the option to dedicate either a spare disk or a RAM-based
volume for archiving operations. Local archiving may
also be disabled entirely, which removes much of the
I/O overhead of migration but prevents use of the delta
migration optimization – effectively trading off between
disk and network resource consumption.
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Figure 6: LAN migration of a large (dedicated) tenant.

6 Experimental Evaluation

To evaluate our prototype, we first consider the indi-
vidual elasticity mechanisms employed by ShuttleDB
(from Table 1), then consider two scenarios demonstrat-
ing ShuttleDB’s utility – first, in automating database
cloud bursting, and second, in leveraging DB-aware elas-
ticity to increase the efficiency of VM replication.

We use a heavily modified version of the Yahoo Cloud
Serving Benchmark (YCSB) [12] to generate the work-
load for our system. While YCSB was originally de-
signed exclusively for key-value stores, we begin with
an extended, transactional version used in prior work
[17, 14, 6] and further extend it to generate a closed
workload with Poisson-distributed arrival times. Each
workload consists of replaying a trace of workload ‘in-
tensities’, which determine the number of transactions
issued to the tenant per time unit.

6.1 LAN Elasticity

We first compare the efficiency of VM and DB-aware mi-
gration when operating over a LAN, in order to substan-
tiate our earlier arguments about when each technique
is preferable. We configure a VM with 30 GB of stor-
age and 2 GB of RAM. The size of the base system is
roughly 1.6 GB, while all additional space is used by the
database server. We first consider moving a large (i.e.,
dedicated) database tenant by configuring a 20 GB ten-
ant and moving it to a second server while servicing a
workload. Figure 6 shows the duration of migration for 3
cases: a no-tenant baseline (i.e., only the OS), VM-based
tenant migration, and DB-aware tenant migration. We
see that the benefit of employing DB-aware elasticity in
this case is minimal and likely does not justify the added
migration complexity versus simply using VM elasticity.

Next, we configure the VM with twenty 1 GB tenants
instead of a single 20 GB tenant, and evaluate four sce-
narios: VM migration, DB-aware migration, DB-aware
migration with precopying (i.e., preparation for future
delta migrations), and DB-aware delta migration (i.e.,
migrating to a server with a local precopy). In each sce-
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Figure 7: LAN migration of a small (collocated) tenant.

nario, we transfer a single tenant from the shared server
to a separate, dedicated server. In this case, as shown
in Figure 7, the differences are striking. VM migration,
which simply transfers the entire VM, results in nearly
20x slower migration than DB-aware migration. Adding
precopying to DB-aware migration adds a small amount
of overhead, but still greatly outperforms VM elasticity.
Finally, using a previous precopy to perform a delta mi-
gration takes somewhat longer on account of processing
the database delta, but results in transferring less than
200 MB total of data – roughly one fifth of the already
reduced amount in the base DB-aware case.

Result: With large tenants, the simplicity of VM mi-
gration is preferable. With small tenants, however, DB-
aware elasticity greatly outperforms VM elasticity. The
use of precopying can even further reduce the amount of
network data required.

6.2 DB-Aware Live Migration

Next, we evaluate the ‘liveness’ of our DB-aware migra-
tion technique by considering the amount of downtime
incurred. We configured two ShuttleDB servers over a
LAN, and a single tenant with 1.5 GB of data servic-
ing 80 read and 20 write queries per second. We then
moved the tenant from the source server to the target us-
ing DB-aware elasticity, observing the transaction laten-
cies shown in Figure 8. Migration begins at event (a), at
which point ShuttleDB begins streaming the tenant to the
target server (phase 1). As seen, this operation has little
to no visible impact on tenant performance. Less than
3 minutes later, at event (b), the initial streaming copy
is completed, and the target server begins preparing the
copy to service the workload. Once complete, two copies
of the tenant are running, and the original copy begins
applying deltas to the new copy (phase 2). Delta rounds
take roughly 15 seconds, at which point the workload is
frozen and the handover (phase 3) is performed.

The inset of Figure 8 shows a plot of transaction la-
tencies over time around the time of the handover. La-
tency just following the handover spikes, owing to the
frozen workload (during which transactions are queued
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Figure 8: Live migration of a tenant servicing 10 transactions
(100 queries) per second.

at the source). However, this period lasts only 2 sec-
onds, after which queued transactions are released to the
target. Here, the queued transactions are delayed by an
average of 2-3 seconds, but only 25 transactions in total
are affected, and the entire duration of possible delays
lasts less than 5 seconds. Finally, we note that this re-
sult is conservative, since the migrating tenant is servic-
ing many queries during the handover; less active tenants
will experience a shorter handover period, and thus will
observe lesser delays. As seen, the only notable work-
load impact occurs during this handover period, whose
duration is dependent only on the write workload inten-
sity, and is not related to data size. Migrating a larger
tenant simply extends the harmless duration of phase 1.

Result: DB-aware elasticity in ShuttleDB provides ro-
bust migration capabilities with near-zero downtime and
minimal query delays, even for highly active tenants.

6.3 Wide-Area Elasticity

Elasticity between data centers (i.e., over a WAN) is
challenging due to lower bandwidth and higher laten-
cies. To evaluate this scenario, we configured a source
server on the west coast of the US with ten 512 MB
database tenants handling 50 queries per second, and a
target server in an Amazon EC2 data center located on
the east coast of the US. As shown in Figure 9, we then
shifted one of the ten tenants to the EC2 server using DB-
aware elasticity, then back from the EC2 server using a
delta migration after waiting several minutes. As shown,
nearly 90% of the elapsed time of the initial migration is
spent transferring the initial snapshot (unsurprising given
the limited available bandwidth). Importantly, the entire
period in which the workload is not serviced (during the
handover phase) lasts only a single second.

On the returning migration, we again observe the ef-
fectiveness of DB-aware delta migrations. While pro-
cessing deltas increases the time spent in phase 2, the
decrease in phase 1 more than compensates, and the total
migration duration on the return is less than half that of
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Figure 9: DB-aware delta migrations significantly reduce band-
width and time requirements across wide-area networks.

the outgoing migration. Furthermore, the amount of data
transferred during the delta migration is only 97 MB, as
compared to 776 MB during the outgoing migration –
over an 87% reduction.

We could not easily perform a companion experiment
using VM elasticity, as public data centers such as EC2
do not expose their hypervisor infrastructure. Despite
this, however, we would not expect VM elasticity to per-
form well given the limitations demonstrated in the pre-
vious experiment. Moreover, over a lower-bandwidth
network such as a WAN, we would expect the differences
to be even more significant than before.

Result: ShuttleDB elasticity can effectively span mul-
tiple networks and data centers and minimizes the data
transfers necessary.

6.4 Defusing a Hotspot

Here, we present end-to-end experiments demonstrat-
ing how ShuttleDB responds to a server hotspot by mi-
grating and replicating tenants. We use the World Cup
soccer trace [3] to generate the workload for our ex-
periments. This trace contains an end-to-end workload
hotspot, starting with a stable (low) arrival rate, rising to
a peak, then falling back to the baseline.

We configured our local server with 10 tenants, each
with 1 GB of data. The query arrival rate of a tenant is
driven by the world cup trace, while the other tenants run
a standard arrival rate – initially, all arrival rates are iden-
tical. We set the bursting threshold latencies to 300 ms
(upper) and 200 ms (lower). The multi-query transac-
tions executed by all tenants include a mix of read, write,
sort, and join operations, with specific arrival times given
according to a Poisson distribution. Finally, the duration
of the world cup trace is scaled to 90 minutes.

First, we run the workloads with ShuttleDB disabled,
to observe the effects of the hotspot on tenant perfor-
mance. We then re-run the same experiment with tenant
migration on LAN and WAN. All the results are sum-
marized in Figure 10. The increase in workload around
t = 50, results in a sharp latency increase that exceeds
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4x baseline performance without ShuttleDB. When run-
ning with ShuttleDB, however, a migration is initiated
around t = 70, once the ARIMA prediction determines
that latency will exceed the threshold value of 300 ms.
Whether the tenant is migrated to another database on
the same LAN or over WAN, the latency remains within
reasonable bounds with an average latency increase of
100ms for the LAN case. Once the peak has passed and
latency begins to fall to normal levels (around t = 150),
the tenant is returned to the local server.

In a second experiment, shown in Figure 11, we put
the tenant under a series of two workload spikes, exceed-
ing the capacity of the multitenant server. Following the
spikes, the workload on the tenant gradually reduces to
normal. To address the workload spikes, we provisioned
two spare servers for ShuttleDB to use.

After the first spike, ShuttleDB migrates the single
tenant out of the multitenant server to the first dedicated
server, stabilizing performance. Note that although la-
tency spikes briefly immediately following this migra-
tion due to a cold cache, this issue may be mitigated by
executing read queries on both machines to warm the tar-
get cache prior to the handover. After the second spike,
latency increases yet again, and so ShuttleDB replicates
the entire VM to the second spare server. However, note

that the primary reason we can effectively employ VM
replication is because of the migration, which extracts
the single tenant. Following the spikes and gradual de-
crease of the workload, the database is able to scale back,
first by deleting the VM replica, then by performing a
DB-aware delta migration back to the original server.

Result: Migration and replication can be combined in
ShuttleDB to maximize elasticity in multitenant servers.

7 Related Work

Elastic cloud platforms have been proposed for many
useful applications, such as video streaming ser-
vices [32] and medical image registration [21]. The gen-
eral concept of ‘cloud bursting’ [7, 22] has become pop-
ular as a way to merge existing infrastructure with newly
available cloud resources. Systems such as Dolly [9]
have considered cloud systems for databases through the
use of cost models governing database provisioning.

Live migration has been extensively studied in the
context of virtual machines [11, 8, 29], where the key
challenge is migrating a dynamic memory image with
minimal downtime. Live migration has been extended to
the domain of databases in the context of both shared-
nothing systems [17, 18] and systems with networked at-
tached storage [14]. Our own prior work has addressed
performance interference when migrating databases [6].

Multitenant databases have also attracted significant
attention due to the rise of cloud computing, at vary-
ing levels of multitenancy [17, 27, 31]. Prior work
has demonstrated that purely VM-based multitenancy
may result in high overhead and low tenant consolida-
tion [13], a conclusion supported by our own studies.

8 Conclusions

In this paper, we presented techniques to imple-
ment database-aware elasticity in multi-tenant database
clouds. We proposed a database-aware live migration
and replication approach that is designed to work with
common off-the-shelf databases without requiring any
database engine modifications. ShuttleDB combines
database-aware techniques with VM-level mechanisms
to implement a flexible approach to achieving efficient
scale up, scale out or scale back for diverse scenarios
ranging from different tenants sizes to inter- and intra-
data center elasticity. We implemented a prototype of
ShuttleDB and experimentally demonstrated the benefits
of ShuttleDB’s database-aware elasticity mechanisms
and intelligent elasticity algorithm. As future work, we
plan to study the interplay between ShuttleDB’s decision
making and the elasticity mechanisms employed by other
application tiers.
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SHENOY, P. ‘cut me some slack’: latency-aware live migration
for databases. In EDBT (2012).

[7] BARR, J. Cloudbursting—hybrid application host-
ing. http://aws.typepad.com/aws/2008/08/
cloudbursting-.html, 2008.

[8] BRADFORD, R., KOTSOVINOS, E., FELDMANN, A., AND
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